CSCI-564

UNIVERSITY

Constraint Processing and Heuristic Search

Lecture 9 - Pattern Database

Recap

- Previously we saw that heuristics can be calculated on demand.
- Calculated online.
- We need to ensure that calculating that the computing effort is less than a blind search.
- If you save the heuristics, the number will grow over time.

Do you have another approach in mind?

Pattern Database

- We could evaluate the entire abstract search space before search in the concrete problem.

Pattern Database

Shortest path from
$u_{1}{ }^{\prime}$ to $\phi(t)$

Pattern Database

Pattern Database

- During the concrete search we are looking directly inside the pattern database.

Concrete
problem

Pattern Database

$\phi(u)$	u_{1}^{\prime}	$h_{\phi}\left(u_{1}^{\prime}\right)$
	u_{2}^{\prime}	$h_{\phi}\left(u_{2}^{\prime}\right)$

	u_{n}^{\prime}	$h_{\phi}\left(u_{2}^{\prime}\right)$

Pattern Database

- How can we create this database?
- Run BFS backward!

It assumes that there is a set of actions $A^{-1}=\left\{a^{-1} \mid a \in A\right\}$.

- For each action a, it exists an inverse action a^{-1}.
- Such that $v=a(u)$ iff $i=a^{-1}(v)$.

BFS

Pattern Database

- Exercise:
- For the grid problem propose a set of action A^{-1}.
- What do you conclude?

Pattern Database

- Exercise:
- For the grid problem propose a set of action A^{-1}.
- What do you conclude?
- The set of actions A^{-1} is equal to A
- This types of problem is called reversible (undirected graph problem).

Concrete problem

$$
\phi(S) \rightarrow S^{\prime}
$$

Pattern Database

- Works with weighted graph
- Dijkstra can be used to create a pattern database.

($n^{2}-1$)-Puzzle Problem

- $\left(n^{2}-1\right)$-Puzzle Problem:
- States in $\left(n^{2}-1\right)$-Puzzle problem: $\frac{\left(n^{2}\right) \text { ! }}{2}$
- 181,440 possible states for 8-Puzzle
- 1.05×10^{13} possible states for 15 -Puzzle
- What heuristic can you use?
- The number of misplaced tiles
- The maximum Manhattan distance

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Goal

1	4	5	6
10		2	11
14	3	7	15
8	9	13	12

Start

($n^{2}-1$)-Puzzle Problem

- Why are we calling it pattern database and not simply database?
- One abstraction consist to ignore some tiles.
- Their labels are replaced with a symbol (or nothing).
- The remaining set of tiles is called a pattern.
- The fringe
- The corner

You don't care what is inside.

Fringe

Corner

($n^{2}-1$)-Puzzle Problem

- You store each combination of a pattern in the database
- Then, you calculate the heuristic value with your heuristic function(Manhattan distance, etc.)

			Pattern Database		
			3		
		7		u_{1}^{\prime}	$h_{\phi}\left(u_{1}^{\prime}\right)$
		11	u_{2}^{\prime}	$h_{\phi}\left(u_{2}^{\prime}\right)$	
12	13	14	15		

($n^{2}-1$)-Puzzle Problem

- Combining Manhattan distance and one pattern reduces the number of expanded by two orders of magnitude.
- Combined with both patterns, it reduces by three orders of magnitude.

Experiment	Total nodes	Tree size (\%)	Improvement
MD	$36,302,808,031$	100.00	1
MD+FR	$105,067,478$	0.29	346
MD+CO	$83,125,633$	0.23	437
MD+FC	$34,987,894$	0.10	1038

Number of nodes
decreases

Rubik's Cube

- A Rubik's Cube is composed of:
- 27 cubies: 26 visible
- State:
- 8 corners: 3 colors
- 12 edges: 2 colors
- 6 middles: 1 color

- The number of states: $8!\times 3^{8} \times 12!\times 2^{12} / 12 \approx 43 \times 10^{18}$
- The actions:
- Rotating 90° clockwise
- Rotating 180°
- Rotating 270° (90 counterclockwise)

Rubik's Cube

- What happens if we expand the search tree?

Branching Factor
b $=3 \times 6$ Faces $=18$
After first move, the second step cannot be on the same face
$b=15$
Forbid move that twist two faces in a row in opposite order

$$
b=13.35
$$

number of nodes 2.47×10^{20}

Nodes in search tree as a function of depth

Rubik's Cube

- Pattern Database:
- 8 corner cubies: $8!\times 3^{7}=88,179,840$ possible combinations, require 44,089,920 bytes of memory (42 megabytes) - improved heuristic to 8.764
- 6 of 12 edge cubies: $\frac{12!}{6!} \times 2^{6}=42,577,920$ states, require $21,288,960$ bytes (20 megabytes) - improved heuristic to 7.668
- Combine 8 corner and two groups of 6 edge cubies require a memory of 82 megabytes - improved heuristic to 8.878

Rubik's Cube

- Ten solvable instances of Rubik's Cube, by making 100 random moves each, starting from the goal state.

Problem	Depth	Nodes Generated
1	16	$3,720,885,493$
2	17	$11,485,155,726$
3	17	$64,937,508,623$
4	18	$126,005,368,381$
5	18	$262,228,269,081$
6	18	$344,770,394,346$
7	18	$502,417,601,953$
8	18	$562,494,969,937$
9	18	$626,785,460,346$
10	18	$1,021,814,815,051$

Multiple Pattern Databases

- We can improve the pattern database method, by using multiple pattern databases.
$\left.\begin{array}{cccc}\text { Mapping different } \\ \text { states into smaller } \\ \text { patterns }\end{array} \quad \begin{array}{c}\text { Break the large pattern } \\ \text { database into different } \\ \text { smaller ones }\end{array}\right]$

Multiple Pattern Databases

- Granularity: A vector indication how many constants in the original domain are mapped to each constant in the abstract domain.

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Concrete domain

	x	x	3
x	x	x	7
x	x	x	11
12	13	14	15

Abstract domain

	x	x	3
x	x	x	z
x	x	x	11
y	13	y	z

The granularity of ϕ_{1} is $\langle 8,1,1,1,1,1,1,1,1\rangle$
The granularity of ϕ_{2} is $\langle 8,2,2,1,1,1,1\rangle$

Abstract domain

Concrete	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	blank
ϕ_{1}	x	x	3	x	x	x	7	x	x	x	11	12	13	14	15	blank
ϕ_{2}	x	x	3	x	x	x	z	x	x	x	11	y	13	y	z	blank

Multiple Pattern Databases

- Using n pattern databases of size m / n instead of one pattern database of size m improves search performance.
- Experiments with the 8 puzzle:
- Taking tow or smaller pattern databases results in very significant reductions in nodes over using a single large pattern database.
- Using $n=10$ reduces the number of nodes generated almost an order of magnitude over a single pattern database.

Granularity	PDB Size	n	Nodes Generated	CPU (secs)
$\langle 6,2,1\rangle$	252	20	585	0.04
$\langle 6,1,1,1\rangle$	504	10	460	0.02
$\langle 5,3,1\rangle$	504	10	725	0.03
$\langle 4,3,1,1\rangle$	2,520	2	1,212	0.02
$\langle 3,3,2,1\rangle$	5,040	1	3,842	0.07

Multiple Pattern Databases

- Rubik's Cube

Granularity \langle corners $\rangle\langle$ edges \rangle	PDB Size	n	Nodes Generated
$\langle 8\rangle\langle 4,4,1,1,1,1\rangle$	$13,305,600$	8	$2,654,689$
$\langle 8\rangle\langle 3,3,3,1,1,1\rangle$	$17,740,800$	6	$2,639,969$
$\langle 8\rangle\langle 4,3,1 o, 1 o, 1,1,1\rangle$	$26,611,200$	4	$3,096,919$
$\langle 8\rangle\langle 4,3,1 o, 1,1,1,1\rangle$	$53,222,400$	2	$5,329,829$
$\langle 8\rangle\langle 4,3,1,1,1,1,1\rangle$	$106,444,800$	1	$61,465,541$

Multiple Pattern Databases

- Proposition 1: Maxing smaller pattern databases could replace small h-values by larger ones, and substantially reduce the number of patterns with very small h-values
- Proposition 2: Eliminating low h-values is more important for improving search performance than retaining large h-values.

Multiple Pattern Databases, R. C. Holte, etc. ICAPS 2004

Multiple Pattern Databases

- Making the pattern databases too small has a negative impact on performance.

Granularity	PDB Size	n	Nodes Generated	CPU (secs)
$\langle 6,2,1\rangle$	252	20	3,132	0.112
$\langle 6,1,1,1\rangle$	504	10	2,807	0.056
$\langle 5,3,1\rangle$	504	10	2,173	0.044
$\langle 4,3,1,1\rangle$	2,520	2	3,902	0.027
$\langle 3,3,2,1\rangle$	5,040	1	18,665	0.113

9 pancake puzzle

